
Accelerating the Super-Resolution Convolutional
Neural Network

Chao Dong, Chen Change Loy(B), and Xiaoou Tang

Department of Information Engineering, The Chinese University of Hong Kong,
Hong Kong, China

{dc012,ccloy,xtang}@ie.cuhk.edu.hk

Abstract. As a successful deep model applied in image super-resolution
(SR), the Super-Resolution Convolutional Neural Network (SRCNN)
[1,2] has demonstrated superior performance to the previous hand-
crafted models either in speed and restoration quality. However, the high
computational cost still hinders it from practical usage that demands
real-time performance (24 fps). In this paper, we aim at accelerating the
current SRCNN, and propose a compact hourglass-shape CNN struc-
ture for faster and better SR. We re-design the SRCNN structure mainly
in three aspects. First, we introduce a deconvolution layer at the end
of the network, then the mapping is learned directly from the original
low-resolution image (without interpolation) to the high-resolution one.
Second, we reformulate the mapping layer by shrinking the input feature
dimension before mapping and expanding back afterwards. Third, we
adopt smaller filter sizes but more mapping layers. The proposed model
achieves a speed up of more than 40 times with even superior restora-
tion quality. Further, we present the parameter settings that can achieve
real-time performance on a generic CPU while still maintaining good
performance. A corresponding transfer strategy is also proposed for fast
training and testing across different upscaling factors.

1 Introduction

Single image super-resolution (SR) aims at recovering a high-resolution (HR)
image from a given low-resolution (LR) one. Recent SR algorithms are mostly
learning-based (or patch-based) methods [1–8] that learn a mapping between
the LR and HR image spaces. Among them, the Super-Resolution Convolu-
tional Neural Network (SRCNN) [1,2] has drawn considerable attention due to
its simple network structure and excellent restoration quality. Though SRCNN is
already faster than most previous learning-based methods, the processing speed
on large images is still unsatisfactory. For example, to upsample an 240 × 240
image by a factor of 3, the speed of the original SRCNN [1] is about 1.32 fps,
which is far from real-time (24 fps). To approach real-time, we should acceler-
ate SRCNN for at least 17 times while keeping the previous performance. This

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-46475-6 25) contains supplementary material, which is available to
authorized users.

c© Springer International Publishing AG 2016
B. Leibe et al. (Eds.): ECCV 2016, Part II, LNCS 9906, pp. 391–407, 2016.
DOI: 10.1007/978-3-319-46475-6 25

http://dx.doi.org/10.1007/978-3-319-46475-6_25
http://dx.doi.org/10.1007/978-3-319-46475-6_25

392 C. Dong et al.

sounds implausible at the first glance, as accelerating by simply reducing the
parameters will severely impact the performance. However, when we delve into
the network structure, we find two inherent limitations that restrict its running
speed.

First, as a pre-processing step, the original LR image needs to be upsampled
to the desired size using bicubic interpolation to form the input. Thus the com-
putation complexity of SRCNN grows quadratically with the spatial size of the
HR image (not the original LR image). For the upscaling factor n, the compu-
tational cost of convolution with the interpolated LR image will be n2 times of
that for the original LR one. This is also the restriction for most learning-based
SR methods [3–5,7,8,10]. If the network was learned directly from the original
LR image, the acceleration would be significant, i.e., about n2 times faster.

The second restriction lies on the costly non-linear mapping step. In SRCNN,
input image patches are projected on a high-dimensional LR feature space, then
followed by a complex mapping to another high-dimensional HR feature space.
Dong et al. [2] show that the mapping accuracy can be substantially improved
by adopting a wider mapping layer, but at the cost of the running time. For
example, the large SRCNN (SRCNN-Ex) [2] has 57,184 parameters, which are
six times larger than that for SRCNN (8,032 parameters). Then the question is
how to shrink the network scale while still keeping the previous accuracy.

According to the above observations, we investigate a more concise and effi-
cient network structure for fast and accurate image SR. To solve the first problem,
we adopt a deconvolution layer to replace the bicubic interpolation. To further
ease the computational burden, we place the deconvolution layer1 at the end
of the network, then the computational complexity is only proportional to the
spatial size of the original LR image. It is worth noting that the deconvolution
layer is not equal to a simple substitute of the conventional interpolation ker-
nel like in FCN [13], or ‘unpooling+convolution’ like [14]. Instead, it consists of
diverse automatically learned upsampling kernels (see Fig. 3) that work jointly
to generate the final HR output, and replacing these deconvolution filters with
uniform interpolation kernels will result in a drastic PSNR drop (e.g., at least
0.9 dB on the Set5 dataset [15] for ×3).

For the second problem, we add a shrinking and an expanding layer at the
beginning and the end of the mapping layer separately to restrict mapping in a
low-dimensional feature space. Furthermore, we decompose a single wide map-
ping layer into several layers with a fixed filter size 3 × 3. The overall shape of
the new structure looks like an hourglass, which is symmetrical on the whole,
thick at the ends and thin in the middle. Experiments show that the proposed
model, named as Fast Super-Resolution Convolutional Neural Networks (FSR-
CNN)2, achieves a speed-up of more than 40× with even superior performance
than the SRCNN-Ex. In this work, we also present a small FSRCNN network

1 We follow [11] to adopt the terminology ‘deconvolution’. We note that it carries very
different meaning in classic image processing, see [12].

2 The implementation is available on the project page http://mmlab.ie.cuhk.edu.hk/
projects/FSRCNN.html.

http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html
http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html

Accelerating the Super-Resolution Convolutional Neural Network 393

Fig. 1. The proposed FSRCNN networks achieve better super-resolution quality than
existing methods, and are tens of times faster. Especially, the FSRCNN-s can run in
real-time (>24 fps) on a generic CPU. The chart is based on the Set14 [9] results
summarized in Tables 3 and 4.

(FSRCNN-s) that achieves similar restoration quality as SRCNN, but is 17.36
times faster and can run in real time (24 fps) with a generic CPU. As shown
in Fig. 1, the FSRCNN networks are much faster than contemporary SR models
yet achieving superior performance.

Apart from the notable improvement in speed, the FSRCNN also has another
appealing property that could facilitate fast training and testing across different
upscaling factors. Specifically, in FSRCNN, all convolution layers (except the
deconvolution layer) can be shared by networks of different upscaling factors.
During training, with a well-trained network, we only need to fine-tune the
deconvolution layer for another upscaling factor with almost no loss of mapping
accuracy. During testing, we only need to do convolution operations once, and
upsample an image to different scales using the corresponding deconvolution
layer.

Our contributions are three-fold: (1) We formulate a compact hourglass-shape
CNN structure for fast image super-resolution. With the collaboration of a set
of deconvolution filters, the network can learn an end-to-end mapping between
the original LR and HR images with no pre-processing. (2) The proposed model
achieves a speed up of at least 40× than the SRCNN-Ex [2] while still keeping
its exceptional performance. One of its small-size version can run in real-time
(>24 fps) on a generic CPU with better restoration quality than SRCNN [1].
(3) We transfer the convolution layers of the proposed networks for fast training
and testing across different upscaling factors, with no loss of restoration quality.

2 Related Work

Deep Learning for SR: Recently, the deep learning techniques have been suc-
cessfully applied on SR. The pioneer work is termed as the Super-Resolution
Convolutional Neural Network (SRCNN) proposed by Dong et al. [1,2]. Moti-
vated by SRCNN, some problems such as face hallucination [16] and depth map

394 C. Dong et al.

super-resolution [17] have achieved state-of-the-art results. Deeper structures
have also been explored in [18,19]. Different from the conventional learning-
based methods, SRCNN directly learns an end-to-end mapping between LR and
HR images, leading to a fast and accurate inference. The inherent relationship
between SRCNN and the sparse-coding-based methods ensures its good per-
formance. Based on the same assumption, Wang et al. [8] further replace the
mapping layer by a set of sparse coding sub-networks and propose a sparse
coding based network (SCN). With the domain expertise of the conventional
sparse-coding-based method, it outperforms SRCNN with a smaller model size.
However, as it strictly mimics the sparse-coding solver, it is very hard to shrink
the sparse coding sub-network with no loss of mapping accuracy. Furthermore,
all these networks [8,18,19] need to process the bicubic-upscaled LR images. The
proposed FSRCNN does not only perform on the original LR image, but also
contains a simpler but more efficient mapping layer. Furthermore, the previous
methods have to train a totally different network for a specific upscaling fac-
tor, while the FSRCNN only requires a different deconvolution layer. This also
provides us a faster way to upscale an image to several different sizes.

CNNs Acceleration: A number of studies have investigated the acceleration
of CNN. Denton et al. [20] first investigate the redundancy within the CNNs
designed for object detection. Then Zhang et al. [21] make attempts to accelerate
very deep CNNs for image classfication. They also take the non-linear units into
account and reduce the accumulated error by asymmetric reconstruction. Our
model also aims at accelerating CNNs but in a different manner. First, they focus
on approximating the existing well-trained models, while we reformulate the
previous model and achieves better performance. Second, the above methods are
all designed for high-level vision problems (e.g., image classification and object
detection), while ours are for the low-level vision task. As the deep models for
SR contain no fully-connected layers, the approximation of convolution filters
will severely impact the performance.

3 Fast Super-Resolution by CNN

We first briefly describe the network structure of SRCNN [1,2], and then we
detail how we reformulate the network layer by layer. The differences between
FSRCNN and SRCNN are presented at the end of this section.

3.1 SRCNN

SRCNN aims at learning an end-to-end mapping function F between the bicubic-
interpolated LR image Y and the HR image X. The network contains all con-
volution layers, thus the size of the output is the same as that of the input
image. As depicted in Fig. 2, the overall structure consists of three parts that
are analogous to the main steps of the sparse-coding-based methods [10]. The
patch extraction and representation part refers to the first layer, which extracts
patches from the input and represents each patch as a high-dimensional feature

Accelerating the Super-Resolution Convolutional Neural Network 395

Patch extraction and
representation

Non-linear
Mapping

Reconstruction

Original
low-resolution

image

Feature extraction Shrinking DeconvolutionMapping Expanding

Bicubic
interpolation

No pre-processing

High-resolution
image

SRCNN

FSRCNN

Fig. 2. This figure shows the network structures of the SRCNN and FSRCNN. The
proposed FSRCNN is different from SRCNN mainly in three aspects. First, FSRCNN
adopts the original low-resolution image as input without bicubic interpolation. A
deconvolution layer is introduced at the end of the network to perform upsampling.
Second, The non-linear mapping step in SRCNN is replaced by three steps in FSRCNN,
namely the shrinking, mapping, and expanding step. Third, FSRCNN adopts smaller
filter sizes and a deeper network structure. These improvements provide FSRCNN with
better performance but lower computational cost than SRCNN.

vector. The non-linear mapping part refers to the middle layer, which maps the
feature vectors non-linearly to another set of feature vectors, or namely HR fea-
tures. Then the last reconstruction part aggregates these features to form the
final output image.

The computation complexity of the network can be calculated as follows,

O{(f2
1n1 + n1f

2
2n2 + n2f

2
3)SHR}, (1)

where {fi}3i=1 and {ni}3i=1 are the filter size and filter number of the three layers,
respectively. SHR is the size of the HR image. We observe that the complexity
is proportional to the size of the HR image, and the middle layer contributes
most to the network parameters. In the next section, we present the FSRCNN
by giving special attention to these two facets.

3.2 FSRCNN

As shown in Fig. 2, FSRCNN can be decomposed into five parts – feature extrac-
tion, shrinking, mapping, expanding and deconvolution. The first four parts are
convolution layers, while the last one is a deconvolution layer. For better under-
standing, we denote a convolution layer as Conv(fi, ni, ci), and a deconvolution
layer as DeConv(fi, ni, ci), where the variables fi, ni, ci represent the filter size,
the number of filters and the number of channels, respectively.

As the whole network contains tens of variables (i.e., {fi, ni, ci}6i=1), it is
impossible for us to investigate each of them. Thus we assign a reasonable value
to the insensitive variables in advance, and leave the sensitive variables unset.

396 C. Dong et al.

We call a variable sensitive when a slight change of the variable could signif-
icantly influence the performance. These sensitive variables always represent
some important influential factors in SR, which will be shown in the following
descriptions.

Feature Extraction: This part is similar to the first part of SRCNN, but differ-
ent on the input image. FSRCNN performs feature extraction on the original LR
image without interpolation. To distinguish from SRCNN, we denote the small
LR input as Ys. By doing convolution with the first set of filters, each patch
of the input (1-pixel overlapping) is represented as a high-dimensional feature
vector.

We refer to SRCNN on the choice of parameters – f1, n1, c1. In SRCNN, the
filter size of the first layer is set to be 9. Note that these filters are performed on
the upscaled image Y . As most pixels in Y are interpolated from Ys, a 5×5 patch
in Ys could cover almost all information of a 9×9 patch in Y . Therefore, we can
adopt a smaller filter size f1 = 5 with little information loss. For the number of
channels, we follow SRCNN to set c1 = 1. Then we only need to determine the
filter number n1. From another perspective, n1 can be regarded as the number
of LR feature dimension, denoted as d – the first sensitive variable. Finally, the
first layer can be represented as Conv(5, d, 1).

Shrinking: In SRCNN, the mapping step generally follows the feature extrac-
tion step, then the high-dimensional LR features are mapped directly to the HR
feature space. However, as the LR feature dimension d is usually very large, the
computation complexity of the mapping step is pretty high. This phenomenon
is also observed in some deep models for high-level vision tasks. Authors in [22]
apply 1 × 1 layers to save the computational cost.

With the same consideration, we add a shrinking layer after the feature
extraction layer to reduce the LR feature dimension d. We fix the filter size
to be f2 = 1, then the filters perform like a linear combination within the LR
features. By adopting a smaller filter number n2 = s << d, the LR feature
dimension is reduced from d to s. Here s is the second sensitive variable that
determines the level of shrinking, and the second layer can be represented as
Conv(1, s, d). This strategy greatly reduces the number of parameters (detailed
computation in Sect. 3.3).

Non-linear Mapping: The non-linear mapping step is the most important part
that affects the SR performance, and the most influencing factors are the width
(i.e., the number of filters in a layer) and depth (i.e., the number of layers)
of the mapping layer. As indicated in SRCNN [2], a 5 × 5 layer achieves much
better results than a 1 × 1 layer. But they are lack of experiments on very deep
networks.

The above experiences help us to formulate a more efficient mapping layer for
FSRCNN. First, as a trade-off between the performance and network scale, we
adopt a medium filter size f3 = 3. Then, to maintain the same good performance
as SRCNN, we use multiple 3×3 layers to replace a single wide one. The number
of mapping layers is another sensitive variable (denoted as m), which determines

Accelerating the Super-Resolution Convolutional Neural Network 397

both the mapping accuracy and complexity. To be consistent, all mapping layers
contain the same number of filters n3 = s. Then the non-linear mapping part
can be represented as m × Conv(3, s, s).

Expanding: The expanding layer acts like an inverse process of the shrinking
layer. The shrinking operation reduces the number of LR feature dimension for
the sake of the computational efficiency. However, if we generate the HR image
directly from these low-dimensional features, the final restoration quality will be
poor. Therefore, we add an expanding layer after the mapping part to expand
the HR feature dimension. To maintain consistency with the shrinking layer, we
also adopt 1×1 filters, the number of which is the same as that for the LR feature
extraction layer. As opposed to the shrinking layer Conv(1, s, d), the expanding
layer is Conv(1, d, s). Experiments show that without the expanding layer, the
performance decreases up to 0.3 dB on the Set5 test set [15].

Deconvolution: The last part is a deconvolution layer, which upsamples and
aggregates the previous features with a set of deconvolution filters. The decon-
volution can be regarded as an inverse operation of the convolution. For convo-
lution, the filter is convolved with the image with a stride k, and the output is
1/k times of the input. Contrarily, if we exchange the position of the input and
output, the output will be k times of the input, as depicted in Fig. 4. We take
advantage of this property to set the stride k = n, which is the desired upscaling
factor. Then the output is directly the reconstructed HR image.

When we determine the filter size of the deconvolution filters, we can look
at the network from another perspective. Interestingly, the reversed network
is like a downscaling operator that accepts an HR image and outputs the LR
one. Then the deconvolution layer becomes a convolution layer with a stride n.
As it extracts features from the HR image, we should adopt 9 × 9 filters that
are consistent with the first layer of SRCNN. Similarly, if we reverse back, the
deconvolution filters should also have a spatial size f5 = 9. Experiments also
demonstrate this assumption. Figure 3 shows the learned deconvolution filters,
the patterns of which are very similar to that of the first-layer filters in SRCNN.
Lastly, we can represent the deconvolution layer as DeConv(9, 1, d).

Different from inserting traditional interpolation kernels (e.g., bicubic or
bilinear) in-network [13] or having ‘unpooling+convolution’ [14], the deconvo-
lution layer learns a set of upsampling kernel for the input feature maps. As
shown in Fig. 3, these kernels are diverse and meaningful. If we force these ker-
nels to be identical, the parameters will be used inefficiently (equal to sum up
the input feature maps as one), and the performance will drop at least 0.9 dB
on the Set5.

PReLU: For the activation function after each convolution layer, we suggest
the use of the Parametric Rectified Linear Unit (PReLU) [23] instead of the
commonly-used Rectified Linear Unit (ReLU). They are different on the coef-
ficient of the negative part. For ReLU and PReLU, we can define a general
activation function as f(xi) = max(xi, 0) + aimin(0, xi), where xi is the input
signal of the activation f on the i-th channel, and ai is the coefficient of the

398 C. Dong et al.

Fig. 3. The learned deconvolution layer (56 channels) for the upscaling factor 3.

negative part. The parameter ai is fixed to be zero for ReLU, but is learnable
for PReLU. We choose PReLU mainly to avoid the “dead features” [11] caused
by zero gradients in ReLU. Then we can make full use of all parameters to test
the maximum capacity of different network designs. Experiments show that the
performance of the PReLU-activated networks is more stable, and can be seen
as the up-bound of that for the ReLU-activated networks.

Overall Structure: We can connect the above five parts to form a complete
FSRCNN network as Conv(5, d, 1) − PReLU − Conv(1, s, d) − PReLU − m ×
Conv(3, s, s)−PReLU−Conv(1, d, s)−PReLU−DeConv(9, 1, d). On the whole,
there are three sensitive variables (i.e., the LR feature dimension d, the number
of shrinking filters s, and the mapping depth m) governing the performance and
speed. For simplicity, we represent a FSRCNN network as FSRCNN(d, s,m).
The computational complexity can be calculated as

O{(25d + sd + 9ms2 + ds + 81d)SLR} = O{(9ms2 + 2sd + 106d)SLR}. (2)

We exclude the parameters of PReLU, which introduce negligible computational
cost. Interestingly, the new structure looks like an hourglass, which is symmetri-
cal on the whole, thick at the ends, and thin in the middle. The three sensitive
variables are just the controlling parameters for the appearance of the hour-
glass. Experiments show that this hourglass design is very effective for image
super-resolution.

Cost Function: Following SRCNN, we adopt the mean square error (MSE) as
the cost function. The optimization objective is represented as

min
θ

1
n

∑n

i=1
||F (Y i

s ; θ) − Xi||22, (3)

where Y i
s and Xi are the i-th LR and HR sub-image pair in the training data,

and F (Y i
s ; θ) is the network output for Y i

s with parameters θ. All parameters are
optimized using stochastic gradient descent with the standard backpropagation.

3.3 Differences Against SRCNN: From SRCNN to FSRCNN

To better understand how we accelerate SRCNN, we transform the SRCNN-Ex
to another FSRCNN (56,12,4) within three steps, and show how much accel-
eration and PSNR gain are obtained by each step. We use a representative

Accelerating the Super-Resolution Convolutional Neural Network 399

upscaling factor n = 3. The network configurations of SRCNN, FSRCNN and
the two transition states are shown in Table 1. We also show their performance
(average PSNR on Set5) trained on the 91-image dataset [10].

Table 1. The transitions from SRCNN to FSRCNN.

SRCNN-Ex Transition state 1 Transition state 2 FSRCNN (56,12,4)

First part Conv(9,64,1) Conv(9,64,1) Conv(9,64,1) Conv(5,56,1)

Mid part Conv(5,32,64) Conv(5,32,64) Conv(1,12,64)-

4Conv(3,12,12)-

Conv(1,64,12)

Conv(1,12,56)-

4Conv(3,12,12)-

Conv(1,56,12)

Last part Conv(5,1,32) DeConv(9,1,32) DeConv(9,1,64) DeConv(9,1,56)

Input size SHR SLR SLR SLR

Parameters 57184 58976 17088 12464

Speedup 1× 8.7× 30.1× 41.3×
PSNR (Set5) 32.83 dB 32.95 dB 33.01 dB 33.06 dB

First, we replace the last convolution layer of SRCNN-Ex with a deconvolu-
tion layer, then the whole network will perform on the original LR image and the
computation complexity is proportional to SLR instead of SHR. This step will
enlarge the network scale but achieve a speedup of 8.7× (i.e., 57184/58976×32).
As the learned deconvolution kernels are better than a single bicubic kernel, the
performance increases roughly by 0.12 dB. Second, the single mapping layer
is replaced with the combination of a shrinking layer, 4 mapping layers and
an expanding layer. Overall, there are 5 more layers, but the parameters are
decreased from 58,976 to 17,088. Also, the acceleration after this step is the
most prominent – 30.1×. It is widely observed that depth is the key factor that
affects the performance. Here, we use four “narrow” layers to replace a single
“wide” layer, thus achieving better results (33.01 dB) with much less parameters.
Lastly, we adopt smaller filter sizes and less filters (e.g., from Conv(9, 64, 1) to
Conv(5, 56, 1)), and obtain a final speedup of 41.3×. As we remove some redun-
dant parameters, the network is trained more efficiently and achieves another
0.05 dB improvement.

It is worth noting that this acceleration is NOT at the cost of performance
degradation. Contrarily, the FSRCNN (56,12,4) outperforms SRCNN-Ex by a
large margin (e.g., 0.23 dB on the Set5 dataset). The main reasons of high per-
formance have been presented in the above analysis. This is the main difference
between our method and other CNN acceleration works [20,21]. Nevertheless,
with the guarantee of good performance, it is easier to cooperate with other
acceleration methods to get a faster model.

3.4 SR for Different Upscaling Factors

Another advantage of FSRCNN over the previous learning-based methods is
that FSRCNN could achieve fast training and testing across different upscaling
factors. Specifically, we find that all convolution layers on the whole act like

400 C. Dong et al.

Fig. 4. The FSRCNN consists of convolution layers and a deconvolution layer. The
convolution layers can be shared for different upscaling factors. A specific deconvolution
layer is trained for different upscaling factors.

a complex feature extractor of the LR image, and only the last deconvolution
layer contains the information of the upscaling factor. This is also proved by
experiments, of which the convolution filters are almost the same for different
upscaling factors3. With this property, we can transfer the convolution filters for
fast training and testing.

In practice, we train a model for an upscaling factor in advance. Then during
training, we only fine-tune the deconvolution layer for another upscaling factor
and leave the convolution layers unchanged. The fine-tuning is fast, and the
performance is as good as training from scratch (see Sect. 4.4). During testing,
we perform the convolution operations once, and upsample an image to different
sizes with the corresponding deconvolution layer. If we need to apply several
upscaling factors simultaneously, this property can lead to much faster testing
(as illustrated in Fig. 4).

4 Experiments

4.1 Implementation Details

Training Dataset. The 91-image dataset is widely used as the training set
in learning-based SR methods [1,5,10]. As deep models generally benefit from
big data, studies have found that 91 images are not enough to push a deep
model to the best performance. Yang et al. [24] and Schulter et al. [7] use the
BSD500 dataset [25]. However, images in the BSD500 are in JPEG format, which
are not optimal for the SR task. Therefore, we contribute a new General-100
dataset that contains 100 bmp-format images (with no compression)4. The size
of the newly introduced 100 images ranges from 710 × 704 (large) to 131 × 112
(small). They are all of good quality with clear edges but fewer smooth regions
(e.g., sky and ocean), thus are very suitable for the SR training. In the following
3 Note that in SRCNN and SCN, the convolution filters differ a lot for different upscal-

ing factors.
4 We follow [26] to introduce only 100 images in a new super-resolution dataset. A

larger dataset with more training images will be released on the project page.

Accelerating the Super-Resolution Convolutional Neural Network 401

experiments, apart from using the 91-image dataset for training, we will also
evaluate the applicability of the joint set of the General-100 dataset and the
91-image dataset to train our networks. To make full use of the dataset, we
also adopt data augmentation as in [8]. We augment the data in two ways.
(1) Scaling: each image is downscaled with the factor 0.9, 0.8, 0.7 and 0.6. (2)
Rotation: each image is rotated with the degree of 90, 180 and 270. Then we will
have 5 × 4 − 1 = 19 times more images for training.

Test and Validation Dataset. Following SRCNN and SCN, we use the
Set5 [15], Set14 [9] and BSD200 [25] dataset for testing. Another 20 images
from the validation set of the BSD500 dataset are selected for validation.

Training Samples. To prepare the training data, we first downsample the
original training images by the desired scaling factor n to form the LR images.
Then we crop the LR training images into a set of fsub × fsub-pixel sub-images
with a stride k. The corresponding HR sub-images (with size (nfsub)2) are also
cropped from the ground truth images. These LR/HR sub-image pairs are the
primary training data.

For the issue of padding, we empirically find that padding the input or output
maps does little effect on the final performance. Thus we adopt zero padding in
all layers according to the filter size. In this way, there is no need to change
the sub-image size for different network designs. Another issue affecting the sub-
image size is the deconvolution layer. As we train our models with the Caffe
package [27], its deconvolution filters will generate the output with size (nfsub −
n + 1)2 instead of (nfsub)2. So we also crop (n − 1)-pixel borders on the HR
sub-images. Finally, for ×2, ×3 and ×4, we set the size of LR/HR sub-images
to be 102/192, 72/192 and 62/212, respectively.

Training Strategy. For fair comparison with the state-of-the-arts (Sect. 4.5),
we adopt the 91-image dataset for training. In addition, we also explore a two-
step training strategy. First, we train a network from scratch with the 91-image
dataset. Then, when the training is saturated, we add the General-100 dataset
for fine-tuning. With this strategy, the training converges much earlier than
training with the two datasets from the beginning.

When training with the 91-image dataset, the learning rate of the convolution
layers is set to be 10−3 and that of the deconvolution layer is 10−4. Then during
fine-tuning, the learning rate of all layers is reduced by half. For initialization,
the weights of the convolution filters are initialized with the method designed for
PReLU in [23]. As we do not have activation functions at the end, the deconvolu-
tion filters are initialized by the same way as in SRCNN (i.e., drawing randomly
from a Gaussian distribution with zero mean and standard deviation 0.001).

4.2 Investigation of Different Settings

To test the property of the FSRCNN structure, we design a set of controlling
experiments with different values of the three sensitive variables – the LR fea-
ture dimension d, the number of shrinking filters s, and the mapping depth m.

402 C. Dong et al.

Table 2. The comparison of PSNR (Set5) and parameters of different settings.

Settings m = 2 m = 3 m = 4

d = 48, s = 12 32.87 (8832) 32.88 (10128) 33.08 (11424)

d = 56, s = 12 33.00 (9872) 32.97 (11168) 33.16 (12464)

d = 48, s = 16 32.95 (11232) 33.10 (13536) 33.18 (15840)

d = 56, s = 16 33.01 (12336) 33.12 (14640) 33.17 (16944)

Specifically, we choose d = 48, 56, s = 12, 16 and m = 2, 3, 4, thus we conduct a
total of 2 × 2 × 3 = 12 experiments with different combinations.

The average PSNR values on the Set5 dataset of these experiments are shown
in Table 2. We analyze the results in two directions, i.e., horizontally and verti-
cally in the table. First, we fix d, s and examine the influence of m. Obviously,
m = 4 leads to better results than m = 2 and m = 3. This trend can also be
observed from the convergence curves shown in Fig. 5(a). Second, we fix m and
examine the influence of d and s. In general, a better result usually requires more
parameters (e.g., a larger d or s), but more parameters do not always guarantee
a better result. This trend is also reflected in Fig. 5(b), where we see the three
largest networks converge together. From all the results, we find the best trade-
off between performance and parameters – FSRCNN (56,12,4), which achieves
one of the highest results with a moderate number of parameters.

It is worth noticing that the smallest network FSRCNN (48,12,2) achieves
an average PSNR of 32.87 dB, which is already higher than that of SRCNN-Ex
(32.75 dB) reported in [2]. The FSRCNN (48,12,2) contains only 8,832 parame-
ters, then the acceleration compared with SRCNN-Ex is 57184/8832 × 9 = 58.3
times.

4.3 Towards Real-Time SR with FSRCNN

Now we want to find a more concise FSRCNN network that could realize real-
time SR while still keep good performance. First, we calculate how many para-
meters can meet the minimum requirement of real-time implementation (24 fps).
As mentioned in the introduction, the speed of SRCNN to upsample an image

Fig. 5. Convergence curves of different network designs.

Accelerating the Super-Resolution Convolutional Neural Network 403

to the size 760 × 760 is 1.32 fps. The upscaling factor is 3, and SRCNN has
8032 parameters. Then according to Eqs. 1 and 2, the desired FSRCNN net-
work should have at most 8032 × 1.32/24 × 32 ≈ 3976 parameters. To achieve
this goal, we find an appropriate configuration – FSRCNN (32,5,1) that con-
tains 3937 parameters. With our C++ test code, the speed of FSRCNN (32,5,1)
reaches 24.7 fps, satisfying the real-time requirement. Furthermore, the FSRCNN
(32,5,1) even outperforms SRCNN (9-1-5) [1] (see Tables 3 and 4).

4.4 Experiments for Different Upscaling Factors

Unlike existing methods [1,2] that need to train a network from scratch for a
different scaling factor, the proposed FSRCNN enjoys the flexibility of learning
and testing across upscaling factors through transferring the convolution filters
(Sect. 3.4). We demonstrate this flexibility in this section. We choose the FSR-
CNN (56,12,4) as the default network. As we have obtained a well-trained model
under the upscaling factor 3 (in Sect. 4.2), we then train the network for ×2 on
the basis of that for ×3. To be specific, the parameters of all convolution filters
in the well-trained model are transferred to the network of ×2. During train-
ing, we only fine-tune the deconvolution layer on the 91-image and General-100
datasets of ×2. For comparison, we train another network also for ×2 but from
scratch. The convergence curves of these two networks are shown in Fig. 6. Obvi-
ously, with the transferred parameters, the network converges very fast (only a
few hours) with the same good performance as that training form scratch. In
the following experiments, we only train the networks from scratch for ×3, and
fine-tune the corresponding deconvolution layers for ×2 and ×4.

Fig. 6. Convergence curves for different training strategies.

4.5 Comparison with State-of-the-Arts

Compare Using the Same Training Set. First, we compare our method
with four state-of-the-art learning-based SR algorithms that rely on external
databases, namely the super-resolution forest (SRF) [7], SRCNN [1], SRCNN-
Ex [2] and the sparse coding based network (SCN) [8]. The implementations of
these methods are all based on their released source code. As they are written

404 C. Dong et al.

in different programming languages, the comparison of their test time may not
be fair, but still reflects the main trend. To have a fair comparison on restora-
tion quality, all models are trained on the augmented 91-image dataset, so the
results are slightly different from that in the corresponding paper. We select two
representative FSRCNN networks – FSRCNN (short for FSRCNN (56,12,4)),
and FSRCNN-s (short for FSRCNN (32,5,1)). The inference time is tested with
the C++ implementation on an Intel i7 CPU 4.0 GHz. The quantitative results
(PSNR and test time) for different upscaling factors are listed in Table 3. We
first look at the test time, which is the main focus of our work. The proposed
FSRCNN is undoubtedly the fastest method that is at least 40 times faster
than SRCNN-Ex, SRF and SCN (with the upscaling factor 3), while the fastest
FSRCNN-s can achieve real-time performance (>24 fps) on almost all the test
images. Moreover, the FSRCNN still outperforms the previous methods on the
PSNR values especially for ×2 and ×3. We also notice that the FSRCNN achieves
slightly lower PSNR than SCN on factor 4. This is mainly because that the SCN
adopts two models of ×2 to upsample an image by ×4. We have also tried this
strategy and achieved comparable results. However, as we pay more attention to
speed, we still present the results of a single network.

Compare Using Different Training Sets (Following the Literature). To
follow the literature, we also compare the best PSNR results that are reported in
the corresponding paper, as shown in Table 4. We also add another two compet-
itive methods – KK [28] and A+ [5] for comparison. Note that these results are
obtained using different datasets, and our models are trained on the 91-image
and General-100 datasets. From Table 4, we can see that the proposed FSR-
CNN still outperforms other methods on most upscaling factors and datasets.
The reconstructed images of FSRCNN (shown in Fig. 7, more examples can be
found on the project page) are also sharper and clearer than other results. In
another aspect, the restoration quality of small models (FSRCNN-s and SRCNN)
is slightly worse than large models (SRCNN-Ex, SCN and FSRCNN). In Fig. 7,
we could observe some “jaggies” or ringing effects in the results of FSRCNN-s
and SRCNN. We have also done comprehensive comparisons with more SR
algorithms in terms of PSNR, SSIM and IFC [29], which can be found in the
supplementary file.

Table 3. The results of PSNR (dB) and test time (sec) on three test datasets. All
models are trained on the 91-image dataset.

Test
dataset

Upscaling
factor

Bicubic SRF [7] SRCNN [1] SRCNN-Ex [2] SCN [8] FSRCNN-s FSRCNN

PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

Set5 2 33.66 - 36.84 2.1 36.33 0.18 36.67 1.3 36.76 0.94 36.53 0.024 36.94 0.068

Set14 2 30.23 - 32.46 3.9 32.15 0.39 32.35 2.8 32.48 1.7 32.22 0.061 32.54 0.16

BSD200 2 29.70 - 31.57 3.1 31.34 0.23 31.53 1.7 31.63 1.1 31.44 0.033 31.73 0.098

Set5 3 30.39 - 32.73 1.7 32.45 0.18 32.83 1.3 33.04 1.8 32.55 0.010 33.06 0.027

Set14 3 27.54 - 29.21 2.5 29.01 0.39 29.26 2.8 29.37 3.6 29.08 0.023 29.37 0.061

BSD200 3 27.26 - 28.40 2.0 28.27 0.23 28.47 1.7 28.54 2.4 28.32 0.013 28.55 0.035

Set5 4 28.42 - 30.35 1.5 30.15 0.18 30.45 1.3 30.82 1.2 30.04 0.0052 30.55 0.015

Set14 4 26.00 - 27.41 2.1 27.21 0.39 27.44 2.8 27.62 2.3 27.12 0.0099 27.50 0.029

BSD200 4 25.97 - 26.85 1.7 26.72 0.23 26.88 1.7 27.02 1.4 26.73 0.0072 26.92 0.019

Accelerating the Super-Resolution Convolutional Neural Network 405

Table 4. The results of PSNR (dB) on three test datasets. We present the best results
reported in the corresponding paper. The proposed FSCNN and FSRCNN-s are trained
on both 91-image and General-100 dataset. More comparisons with other methods on
PSNR, SSIM and IFC [29] can be found in the supplementary file.

Test
dataset

Upscaling
factor

Bicubic KK [28] A+ [5] SRF [7] SRCNN [1] SRCNN-Ex [2] SCN [8] FSRCNN-s FSRCNN

PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

Set5 2 33.66 36.20 36.55 36.89 36.34 36.66 36.93 36.58 37.00

Set14 2 30.23 32.11 32.28 32.52 32.18 32.45 32.56 32.28 32.63

BSD200 2 29.70 31.30 31.44 31.66 31.38 31.63 31.63 31.48 31.80

Set5 3 30.39 32.28 32.59 32.72 32.39 32.75 33.10 32.61 33.16

Set14 3 27.54 28.94 29.13 29.23 29.00 29.30 29.41 29.13 29.43

BSD200 3 27.26 28.19 28.36 28.45 28.28 28.48 28.54 28.32 28.60

Set5 4 28.42 30.03 30.28 30.35 30.09 30.49 30.86 30.11 30.71

Set14 4 26.00 27.14 27.32 27.41 27.20 27.50 27.64 27.19 27.59

BSD200 4 25.97 26.68 26.83 26.89 26.73 26.92 27.02 26.75 26.98

Fig. 7. The “lenna” image from the Set14 dataset with an upscaling factor 3.

5 Conclusion

While observing the limitations of current deep learning based SR models, we
explore a more efficient network structure to achieve high running speed without
the loss of restoration quality. We approach this goal by re-designing the SRCNN
structure, and achieves a final acceleration of more than 40 times. Extensive
experiments suggest that the proposed method yields satisfactory SR perfor-
mance, while superior in terms of run time. The proposed model can be adapted
for real-time video SR, and motivate fast deep models for other low-level vision
tasks.

Acknowledgment. This work is partially supported by SenseTime Group Limited.

406 C. Dong et al.

References

1. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for
image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.)
ECCV 2014, Part IV. LNCS, vol. 8692, pp. 184–199. Springer, Heidelberg (2014)

2. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convo-
lutional networks. TPAMI 38(2), 295–307 (2015)

3. Yang, C.Y., Yang, M.H.: Fast direct super-resolution by simple functions. In:
ICCV, pp. 561–568 (2013)

4. Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for
fast example-based super-resolution. In: ICCV, pp. 1920–1927 (2013)

5. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood
regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H.
(eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Heidelberg (2015)

6. Cui, Z., Chang, H., Shan, S., Zhong, B., Chen, X.: Deep network cascade for image
super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV
2014, Part V. LNCS, vol. 8693, pp. 49–64. Springer, Heidelberg (2014)

7. Schulter, S., Leistner, C., Bischof, H.: Fast and accurate image upscaling with
super-resolution forests. In: CVPR, pp. 3791–3799 (2015)

8. Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deeply improved sparse coding
for image super-resolution. In: ICCV, pp. 370–378 (2015)

9. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-
representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T.,
Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2011. LNCS, vol. 6920,
pp. 711–730. Springer, Heidelberg (2012)

10. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse rep-
resentation. TIP 19(11), 2861–2873 (2010)

11. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I.
LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014)

12. Xu, L., Ren, J.S., Liu, C., Jia, J.: Deep convolutional neural network for image
deconvolution. In: NIPS, pp. 1790–1798 (2014)

13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR, pp. 3431–3440 (2015)

14. Dosovitskiy, A., Tobias Springenberg, J., Brox, T.: Learning to generate chairs
with convolutional neural networks. In: CVPR, pp. 1538–1546 (2015)

15. Bevilacqua, M., Roumy, A., Guillemot, C., Morel, M.L.A.: Low-complexity single-
image super-resolution based on nonnegative neighbor embedding. In: BMVC
(2012)

16. Zhu, S., Liu, S., Loy, C.C., Tang, X.: Deep cascaded bi-network for face hallucina-
tion. In: ECCV (2016)

17. Hui, T.W., Loy, C.C., Tang, X.: Depth map super resolution by deep multi-scale
guidance. In: ECCV (2016)

18. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep
convolutional networks. In: CVPR (2016)

19. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image
super-resolution. In: CVPR (2016)

20. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear
structure within convolutional networks for efficient evaluation. In: NIPS, pp. 1269–
1277 (2014)

Accelerating the Super-Resolution Convolutional Neural Network 407

21. Zhang, X., Zou, J., He, K., Sun, J.: Accelerating very deep convolutional networks
for classification and detection. In: TPAMI (2015)

22. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv:1312.4400 (2014)
23. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-

level performance on imagenet classification. In: ICCV, pp. 1026–1034 (2015)
24. Yang, C.-Y., Ma, C., Yang, M.-H.: Single-Image super-resolution: a benchmark.

In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV.
LNCS, vol. 8692, pp. 372–386. Springer, Heidelberg (2014)

25. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: ICCV, vol. 2, pp. 416–423 (2001)

26. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed
self-exemplars. In: CVPR, pp. 5197–5206 (2015)

27. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature
embedding. In: ACM MM, pp. 675–678 (2014)

28. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and
natural image prior. TPAMI 32(6), 1127–1133 (2010)

29. Sheikh, H.R., Bovik, A.C., De Veciana, G.: An information fidelity criterion for
image quality assessment using natural scene statistics. TIP 14(12), 2117–2128
(2005)

http://arxiv.org/abs/1312.4400

	Accelerating the Super-Resolution Convolutional Neural Network
	1 Introduction
	2 Related Work
	3 Fast Super-Resolution by CNN
	3.1 SRCNN
	3.2 FSRCNN
	3.3 Differences Against SRCNN: From SRCNN to FSRCNN
	3.4 SR for Different Upscaling Factors

	4 Experiments
	4.1 Implementation Details
	4.2 Investigation of Different Settings
	4.3 Towards Real-Time SR with FSRCNN
	4.4 Experiments for Different Upscaling Factors
	4.5 Comparison with State-of-the-Arts

	5 Conclusion
	References

